Linear Arboricity of Random Regular Graphs

نویسندگان

  • Colin McDiarmid
  • Bruce A. Reed
چکیده

An easy count ing argument shows here that la(G)>f . f f t " d i f f icu l ty is in establishing the upper bound. This problem has received much attention; see Alon [1]. We show here how Alon's beautiful treatment for graphs with large girth allows us easily to handle random regular graphs. By the random regular graph G,,, (where rn is even) we mean a graph picked uniformly at random from the set of a l l r regular graphs on the ver t ices 1,2, . . . , n . We consider r f ixed and let n ---> :n.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Arboricity and Linear k-Arboricity of Regular Graphs

We find upper bounds on the linear k-arboricity of d-regular graphs using a probabilistic argument. For small k these bounds are new. For large k they blend into the known upper bounds on the linear arboricity of regular graphs.

متن کامل

Covering regular graphs with forests of small trees

A (d, k) -forest is a forest consisting of trees whose diameters are at most d and whose maximum vertex degree ,6. is at most k. The (d, k)-arboricity of a graph G is the minimum number of (d, k}-forests needed to cover E(G). This concept is a common generalization of linear k-arboricity and star arboricity. Using a probabilistic approach developed recently for linear karboricity, we obtain an ...

متن کامل

On linear arboricity of cubic graphs

A linear forest is a graph in which each connected component is a chordless path. A linear partition of a graph G is a partition of its edge set into linear forests and la(G) is the minimum number of linear forests in a linear partition. When each path has length at most k a linear forest is a linear k-forest and lak(G) will denote the minimum number of linear k-forests partitioning E(G). We cl...

متن کامل

Bounded Arboricity to Determine the Local Structure of Sparse Graphs

A known approach of detecting dense subgraphs (communities) in large sparse graphs involves first computing the probability vectors for short random walks on the graph, and then using these probability vectors to detect the communities, see Latapy and Pons [2005]. In this paper we focus on the first part of such an approach i.e. the computation of the probability vectors for the random walks, a...

متن کامل

Short Tours through Large Linear Forests

A tour in a graph is a connected walk that visits every vertex at least once, and returns to the starting vertex. Vishnoi (2012) proved that every connected d-regular graph with n vertices has a tour of length at most (1 + o(1))n, where the o(1) term (slowly) tends to 0 as d grows. His proof is based on van-derWarden’s conjecture (proved independently by Egorychev (1981) and by Falikman (1981))...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Random Struct. Algorithms

دوره 1  شماره 

صفحات  -

تاریخ انتشار 1990